In-circuit test (ICT) is an example of white box testing where an electrical probe tests a populated printed circuit board (PCB), checking for shorts, opens, resistance, capacitance, and other basic quantities which will show whether the assembly was correctly fabricated. It may be performed with a bed of nails type test fixture and specialist test equipment, or with a fixtureless in-circuit test setup.
There are many different test platforms for performing in-circuit test; for instance, Agilent 3070, i5000, i3070 Series 5, and i1000, Genrad (now part of Teradyne) TestStation, TS8x, 228x, Stinger, Teradyne, Spectrum 88xx, Z18xx, SPEA, Qmax Systems like QT200, QT8200, V200, V250, V2200, Digitaltest, and SEICA.
Contents
[hide]
* 1 Bed of nails tester
* 2 Example test sequence
* 3 Limitations
* 4 Related technologies
* 5 References
[edit] Bed of nails tester
A bed of nails tester is a traditional electronic test fixture which has numerous pins inserted into holes in an Epoxy phenolic glass cloth laminated sheet (G-10) which are aligned using tooling pins to make contact with test points on a printed circuit board and are also connected to a measuring unit by wires. Named by analogy with a real-world bed of nails, these devices contain an array of small, spring-loaded pogo pins; each pogo pin makes contact with one node in the circuitry of the DUT (device under test). By pressing the DUT down against the bed of nails, reliable contact can be quickly and simultaneously made with hundreds or even thousands of individual test points within the circuitry of the DUT. The hold-down force may be provided manually or by means of a vacuum, thus pulling the DUT downwards onto the nails.
Devices that have been tested on a bed of nails tester may show evidence of this after the fact: small dimples (from the sharp tips of the Pogo pins) can often be seen on many of the soldered connections of the PCB.
Typically, four to six weeks are needed for the manufacture and programming of such a fixture. Fixtures can either be vacuum or press-down. Vacuum fixtures give better signal reading versus the press-down type. On the other hand, vacuum fixtures are expensive because of their high manufacturing complexity. The bed of nails or fixture as generally termed is used together with a in-circuit tester.
This technique of testing PCB's is being slowly superseded by boundary scan techniques (silicon test nails), automated optical inspection, and built-in self-test, due to shrinking product sizes and lack of space on PCB's for test pads.
[edit] Example test sequence
* Discharging capacitors and especially electrolytic capacitors (for safety and measurement stability, this test sequence must be done first before testing any other items)
* Contact Test (To verify the test system is connected to the Unit Under Test(UUT)
* Shorts testing (Test for solder shorts and opens)
* Analog tests (Test all analog components for placement and correct value)
* Testjet (Agilent), FrameScan (Genrad/Teradyne) or ElectroScan (SPEA) (Test for defective open pins on devices)
* Power up UUT
* Powered analog (Test for correct operation of analog components such as regulators and opamps)
* Powered digital (Test the operation of digital components and Boundary scan devices)
* JTAG Boundary scan tests [1]
* Flash,ISP and other device programming
* Agilent Medalist Beadprobe - Bead probe technology
* Agilent/Teradyne Powered Vectorless Test Solution – VTEP v2.0/Powered FrameScan [2]
* Discharging capacitors as UUT is powered down
While in-circuit testers are typically limited to testing the above devices, it is possible to add additional hardware to the test fixture to allow different solutions to be implemented. Such additional hardware includes:
* Cameras to test for presence and correct orientation of components
* Photodetectors to test for LED color and intensity
* External timer counter modules to test very high frequencies (over 50 MHz) crystals and oscillators
* External equipment can be used for hi-voltage measurement (more than 100Vdc due to limitation of voltage that is provided) or AC equipment Source those have interface to PC as the ICT Controller
[edit] Limitations
While in-circuit test is a very powerful tool for testing PCBs, it has these limitations:
* Parallel components can only be tested as one component if the component is same, but different component in parallel connection sometimes can be tested for each component in different testing method
* Electrolytic components can be tested for polarity only on specific configuration (e.g. if not parallel connected to power rails) or with specific sensor
* The quality of electrical contacts can not be tested
* It is only as good as the design of the PCB. If no test access has been provided by the PCB designer then some tests will not be possible. See Design For Test guidelines.
[edit] Related technologies
The following are related technologies and are also used in electronic production to test for the correct operation of Electronics Printed Circuit boards
* AXI Automated x-ray inspection
* JTAG Joint Test Action Group (Boundary Scan Technology)
* AOI automated optical inspection
* Functional testing (see Acceptance testing and FCT)
[edit] References
1. ^ Jun Balangue, “Successful ICT Boundary Scan Implementation,” CIRCUITS ASSEMBLY, September 2010. http://www.circuitsassembly.com/cms/magazine/208-2010-issues/10282-testinspection
2. ^ Jun Balangue, "Overcoming Limited Access at ICT," CIRCUITS ASSEMBLY, December 2008. http://www.circuitsassembly.com/cms/component/content/article/201/7655-overcoming-limited-access-at-ict
Tidak ada komentar:
Posting Komentar