Welcome to SMT MACHINE blog

Jumat, 06 Mei 2011

apa itu Pcb & Pcba


PCB (printed circuit board) yang dalam bahasa Indonesia sering disebut sebagai papan rangkaian tercetak digunakan untuk menyangga dan menghubungkan komponen-komponen dengan menggunakan jalur penghubung konduktor yang biasanya terbuat dari tembaga. Sedangkan sebuah PCB yang telah terisi dengan dengan komponen-komponen elektronik disebut dengan PCBA (printed circuit board assembly).

PCB banyak digunakan karena harganya yang murah dibandingkan jika harus menghubungkan komponen dengan menggunakan kawat. Selain itu produksi PCB dan pemasangan komponen pada PCB dapat dikerjakan secara otomatis menggunakan mesin sehingga dapat mempermudah proses produksinya.

Gambar

Ada beberapa jenis proses pemasangan komponen pada PCB tergantung dari jenis komponen yang akan dipasang, diantaranya:
1. Proses yang dikenal dengan nama Auto Insert
Biasanya komponen yang dipasang adalah komponen yang memiliki kaki untuk dimasukkan ke lubang PCB (axial / radial).
GambarGambar

2. Proses SMT (surface mount technologi)
Komponen yang dipakai adalah dalam bentuk chip. Mesin-mesin yang dipakai dikenal dengan nama mesin SMT/ACM.
Gambar
Perbandingan ukuran komponen chip & radial

3. Proses manual insert
Proses ini memakai manusia untuk memasang komponen pada PCB.
Biasanya komponen tersebut tidak bisa dipasang menggunakan mesin.

Sejarah PCB

Pengembangan PCB sehinggan menjadi seperti yang kita lihat sekarang ini dimulai sejak awal abad ke-20. Pada tahun 1903 seorang penemu Jerman yang bernama Albert Hanson membuat sebuah papan isolator yang dilapisi dengan kertas timah. Lalu Thomas Edison bereksperimen dengan bahan kimia untuk melapisi kertas linen dengan bahan konduktor pada tahun 1904. Pada tahun 1913 Arthur Berry mematenkan metode print dan etc di Inggris, sementara di Amerika Serikat Max Schoop mematenkan metode penyemprotan logam pada papan. Lalu Charles Durcase pada 1927 mematenkan metode electropalating.

Penemu papan tercetak (printed circuit) adalah seorang insinyur dari Austria yang bernama Paul Eisler.

Belajar Leader Ship


Leader Ship
Artikel Berikut saya tulis berdasarkan pengalaman dan training yang pernah dapat selam bekerja dan sekolah dulu

Empat Unsur utama dalam manajemen :
a.Perencanaan / Planning
b.Pengorganisasian / Organizing
c.Pengarahaan / Actuating
d.Pengendalian / Controlling

a.Perencanaan / Planning
Adalah proses menetapkan sasaran dan menentukan apa yang harus dilakukan untuk
Mencapainya.
Point Point dalam step Perencanaan diantaranya :
1.Memprediksi situasi yang akan datang dengan memperhatikan situasi sebelumnya
dan saat ini.
2.Menetukan sasaran / tujuan yang akan dicapai diwaktu yang akan datang.
3.Mengembangkan strategi dan program untuk menentukan langkah langkah apa yang
akan dijalankan untuk mencapai tujuan tersebut.
4.Mengalokasikan sumber daya dan menentukan methode methode yang akan dipakai
untuk mencapai tujuan.
b.Pengorganisasian / OrganizingAdalah kegiatan untuk mengatur dan mengelompokkan member dalam unit unit kecil
sehingga mudah untuk dikontrol dan ditangani.
Point point dalam step pengorganisasian adalah :
1.Membuat rincian pekerjaan
2.Membagi member dalam group group sebagaisehingga bisa menjalankan pekerjaan
sesuai tujuan .
3.Membuat uraian pekerjaan yang berisi batasan batasan tiap group , tanggung jawab
dan hubungan antara group.
4.Menentukan syarat syarat untuk menduduki pos jabatan dalam tiap group.
c.Pengarahaan / ActuatingAdalah suatu usaha membuat orang lain / member mau , tahu dan mampu bekerja
sama untuk mencapai tujuan yang telah ditetap kan.
Point point dalam step Pengarahan diantaranya :
1.Memerikan tugas , tanggung jawab dan kekuasaan yang diperlukan
2.Memotivasi member agar mau melaksanakan hal hal yang seharusnya dilakukan,
3.Memberikan pelatihan / training kepada member agar lebih terampil dalam
menjalankan tugas dalam pencapaian tujuan.
4.Memberikan kesempatan kepada member untuk mengembangkan ide ide kreatifnya
Dalam memecahkan masalah dan strategi mencapai tujuan.
d.Pengendalian / ControllingAdalah suatu usaha untuk memastikan rencana yang telah dibuat bisa dicapai.
Point point dalam step pengendalian diantaranya :
1.mengembangkan standard
2.Menentukan cara cara pemantauan kegiatan melalui laporan laporan yang dibuat
Member member dibawahnya.
3.Mengevaluasi setiap hasil yang telah dicapai masing masing group dan member
4.Memberikan penghargaan / reward kepada group/ member yang bisa mencapai target.
5. Mengambil tidakan koreksi apabila target tidak tercapai untuk kemudian membuat step perbaikan.

Kepemimpinan dan ManajemenKepemimpinan dan Manajemen merupakakn satu kesatuan yang berbeda namun saling melengkapi dalam tuganya.
Perbedaan antara pemimpin dengan manager :
Pemimpin
-Tanggung jawab : menjamin kemampuan pribadi dan group agar tetap bersemangat untuk mencapai tujuan.
-Fungsi : memberi motivasi ,memberi orientasi masa depan dan menyelaraskan setiap usaha mencapai tujuan dari member.
-Sasaran : group yang loyal , produkstif dan semangat.
Manager
-Tanggung Jawab : memanfaatkan sumber daya yang ada secara optimal sehingga tujuan dari persahaan bisa tercapai
-Fungsi :Perncanaan , Pengorganisasian , Pengarahan dan pengontrolan
-Sasaran :Pencapaian sasaran usahan dari perusahaan /mewujudkan visi dan misi perusahaan.
Kiat sukses Pemimpin
Untuk menjadi pemimpin yang sukses harus mempunyai kemampuan sebagai berikut :
-Mempengaruhi : bisa mempengaruhi bawahan sehingga bisa bekerja sesuai yang diharapkan.
-Memotivasi : memberi dorongan dan semangat kepada bawaha
-Menghargai : menghargai setiap capaian bawahan dan ide ide dari bawahan
-Memiliki visi : mempunyai pandangan / target jangka pendek dalam group tersebut
-Komunikasi efektif : bisa menyampaikan hal hal kepada member dengan tepat.
-Menciptakan ide :bisa memberikan ide disaat group menemukan jalan buntu
-Percaya diri : mempunyai kepercayaan diri sehingga bawahan selalu yakin / percaya
-mempunyai integritas : bisa menyatukan elemen” yang ada di groupnya

Breakdown MC


Breakdown maintenance ini diterapkan pada awal-awal tranformasi maintenance yang ada. Dalam metode ini, seorang teknisi dipersiapkan untuk berjaga-jaga pada suatu mesin atau peralatan yang sedang berjalan. Jika terjadi kerusakan atau mesin mati maka saat itulah sang teknisi tersebut bekerja.

Pada dasarnya breakdown maintenance sangat tidak diinginkan, karena akan mengganggu proses produksi secara keseluruhan. Coba dibayangkan, ketika sedang dikejar-kejar target ternyata mesin mati, tidak bisa jalan. Diutak-utik kesana kemari tidak ketemu permasalahannya. Setelah dibongkar ternyata terjadi pergeseran dudukan mesin sebesar 5 mm. Sangat sepele untuk sekali untuk sebuah stop produksi yang nilainya jutaan. Perhitungan kerugian ketika stop produksi bukan hanya pada order yang gagal, namun juga diperhitungkan kerugian waktu berjalan, kerugian manpower, kerugian pembelian spare, kerugian kesempatan, kerugian listik, serta kerugian yang lainnya.
Lain halnya ketika suatu pabrik mempunyai cadangan mesin yang memadai. Mesin pencetak sandal misalnya, punya 15 mesin namun yang aktif hanya 10 mesin. Kondisi cadangan mesin akan sangat membantu back up ketika terjadi masalah pada mesin yang sedang berjalan. Mesin yang macet segera diganti dengan cadangan mesin yang ada sehingga tidak mengganggu proses produksi secara keseluruhan. Breakdown maintenance bisa diterapkan di sini.
karena : tidak perlu menyediakan spare part dalam jumlah tertentu karena tidak dibutuhkan. Spare part yang benar-benar dibutuhkan adalah spare yang mengalami kerusakan pada mesin saat itu, bukan yang lain. Artinya adalah pabrik tidak perlu mengeluarkan biaya untuk spare part dalam jumlah tertentu karena sudah punya mesin cadangan yang bisa digunakan sewaktu-waktu untuk menggantikan mesin yang rusak.
Breakdown maintenance ini dilakukan kerena kondisinya memang tidak terlalu signifikan terhadap operasi maupun produksi.

Rabu, 04 Mei 2011

Auto insert



JVK MACHINE

0.08 s/piece high-speed insertion and variable insertion pitches attain the highest-level productivity in the
 industry.

Features

Higher insertion speed and operation efficiency improves productivity
High-speed insertion at 0.08 s/piece, combined with transfer speed of 2 seconds, provides a 40% improvement in productivity compared with the preceding models.

Variable insertion pitch enables flexible application
The insertion pitch can be varied within a 5 mm to 31 mm range in 1/100 increments.

Running costs reduced
Because re-taping is no longer necessary as jumper wires can be re-used in reel or in drum,running costs are greatly reduced.

Specifications

Name :JVK3
Model No. :NM-AB10
PC board size :50x50x508x381mm
Max. speed :0.08 s/piece
Dimensions :W1812 x D1481 x H1415mm
Mass :1450kg


RH2SB MACHINE



V-shaped cutting of lead tips and high-speed insertion at 0.17 s/piece achieves outstanding productivity.

Features

High-speed insertion at 0.17 s/piece
V-shape cutting of lead tips enables the machine to insert radial lead components at a speed of 0.17 s/piece.

Efficient production
The polarity reversing function and the four-direction, replenished during operation and the automatic recovery function enable efficient, high-desity insertion.

Hole position correction system ensures high reliability
Recognizing the positions of all the holes in the insertion area,the machines corrects the component position, ensuring reliable insertion.

Specifications

Name :RHS2B
Model No. :NM-RA20A
PC board size :50 x 50 ~ 508 x 381mm
No. of component inputs :80
Max. speed :0.17 s/piece
Dimensions :W3000xD2280xH1560
Mass :2300kg(Body only)


RHSG




Realization of high-speed and high-density insertion at 0.25 s/piece and industry-leading area productivity.

Features
Realization of high-speed and high-density insertion at 0.25 s/piece
With the guide pin system, high-density insertion of radial lead component is possible at a speed of 0.25 s/piece

High efficient production
The component feeding part fixed system, compatible with four-directional insertion, release the limitation of component order and realises highly efficient production including preparation.

Able to handle various production configurations
The compact size realizes the in-line with SMT line and further improves total productivity and reliability of production quality.

Specifications

Name :RHSG
Model No. :NM-RB00A
PC board size :50x50x508x381mm
No. of component inputs :40
Max. speed :0.25 s/piece
Dimensions :W1600xD2100xH1550
Mass :2000kg(Body only)


AVK2B


High-speed insertion of 0.15 s/piece and high-speed transfer for much greater productivity.

Features

Enhanced insertion speed and efficiency to improve productivity
Thanks to the insertion speed of 0.15 s/piece and the implementation of faster transfer of tables, the productivity is progressed to a great extent. (10% up compared with the proceeding model)

Vertical feeder provides greater storage capacity
Cartridge-type feeder carriage can be loaded and unloaded easily. Production changeover time is greatly reduced.

Reduction of running cost
Because re-taping is no longer necessary since the taping parts and jumper wire are re-used, running costs greatly reduced.

Specifications

Name :AVK2B
Model No. :NM-AA20
PC board size :50x50x508x381mm
No. of component inputs :60+60+JW(JW: Optional)
(26/52 mm tape)
Max. speed :0.15 s/piece (On condition)
Dimensions :W4050xD1900xH1590mm
Mass :2350kg



Selasa, 03 Mei 2011

package size


Surface mount components are usually smaller than their counterparts with leads, and are designed to be handled by machines rather than by humans. The electronics industry has standardized package shapes and sizes (the leading standardisation body is JEDEC). These include:

* Two-terminal packages
o Rectangular passive components (mostly resistors and capacitors):
+ 01005 (0402 metric) : 0.016" × 0.008" (0.4 mm × 0.2 mm) Typical power rating for resistors 1/32 watt
+ 0201 (0603 metric) : 0.024" × 0.012" (0.6 mm × 0.3 mm) Typical power rating for resistors 1/20 watt
+ 0402 (1005 metric) : 0.04" × 0.02" (1.0 mm × 0.5 mm) Typical power rating for resistors 1/16 watt
+ 0603 (1608 metric) : 0.063" × 0.031" (1.6 mm × 0.8 mm) Typical power rating for resistors 1/16 watt
+ 0805 (2013 metric) : 0.08" × 0.05" (2.0 mm × 1.25 mm) Typical power rating for resistors 1/10 or 1/8 watt
+ 1206 (3216 metric) : 0.126" × 0.063" (3.2 mm × 1.6 mm) Typical power rating for resistors 1/4 watt
+ 1210 (3225 metric) : 0.126" × 0.1" (3.2 mm × 2.5 mm) Typical power rating for resistors 1/2 watt
+ 1806 (4516 metric) : 0.177" × 0.063" (4.5 mm × 1.6 mm)
+ 1812 (4532 metric) : 0.18" × 0.12" (4.5 mm × 3.2 mm) Typical power rating for resistors 1/2 watt
+ 2010 (5025 metric) : 0.2" × 0.1" (5.0 mm × 2.5 mm) Typical power rating for resistors 1/2 watt
+ 2512 (6432 metric) : 0.25" × 0.12" (6.35 mm × 3.0 mm) Typical power rating for resistors 1 watt
o Tantalum capacitors [2]:
+ EIA 3216-12 (Kemet S, AVX S): 3.2 mm × 1.6 mm × 1.2 mm
+ EIA 3216-18 (Kemet A, AVX A): 3.2 mm × 1.6 mm × 1.8 mm
+ EIA 3528-12 (Kemet T, AVX T): 3.5 mm × 2.8 mm × 1.2 mm
+ EIA 3528-21 (Kemet B, AVX B): 3.5 mm × 2.8 mm × 2.1 mm
+ EIA 6032-15 (Kemet U, AVX W): 6.0 mm × 3.2 mm × 1.5 mm
+ EIA 6032-28 (Kemet C, AVX C): 6.0 mm × 3.2 mm × 2.8 mm
+ EIA 7260-38 (Kemet E, AVX V): 7.2 mm × 6.0 mm × 3.8 mm
+ EIA 7343-20 (Kemet V, AVX Y): 7.3 mm × 4.3 mm × 2.0 mm
+ EIA 7343-31 (Kemet D, AVX D): 7.3 mm × 4.3 mm × 3.1 mm
+ EIA 7343-43 (Kemet X, AVX E): 7.3 mm × 4.3 mm × 4.3 mm
o Aluminium capacitors [3] [4] [5]:
+ (Panasonic/CDE A, Chemi-Con B): 3.3 mm × 3.3 mm
+ (Panasonic B, Chemi-Con D): 4.3 mm × 4.3 mm
+ (Panasonic C, Chemi-Con E): 5.3 mm × 5.3 mm
+ (Panasonic D, Chemi-Con F): 6.6 mm × 6.6 mm
+ (Panasonic E/F, Chemi-Con H): 8.3 mm × 8.3 mm
+ (Panasonic G, Chemi-Con J): 10.3 mm × 10.3 mm
+ (Chemi-Con K): 13.0 mm × 13.0 mm
+ (Panasonic H): 13.5 mm × 13.5 mm
+ (Panasonic J, Chemi-Con L): 17.0 mm × 17.0 mm
+ (Panasonic K, Chemi-Con M): 19.0 mm × 19.0 mm
o SOD: Small Outline Diode
+ SOD-523: 1.25 × 0.85 × 0.65 mm [6]
+ SOD-323: 1.7 × 1.25 × 0.95 mm
+ SOD-123: 3.68 × 1.17 × 1.60 mm
+ SOD-80C: 3.50 × 1.50 × More info [7]
o MELF — Metal Electrode Leadless Face — (mostly resistors and diodes): Barrel shaped components, dimensions do not match those of rectangular references for identical codes.
+ MicroMelf (MMU) Size 0102: L:2.2 mm D:1.1 mm (solder pad fits rectangular 0805) 1/5 watt (0.2 W) 100 V
+ MiniMelf (MMA) Size 0204: L:3.6 mm D:1.4 mm (solder pad fits rectangular 1206) 1/4 watt (0.25 W) 200 V
+ Melf (MMB) Size 0207: L:5.8 mm D:2.2 mm 1 watt (1.0 W) 500 V
* Three terminal packages
o SOT: small-outline transistor, with three terminals
+ SOT-223: 6.7 mm × 3.7 mm × 1.8 mm body - four terminals, one of which is a large heat-transfer pad [8]
+ SOT-89: 4.5 mm × 2.5 mm × 1.5 mm body - three terminals, one of which extends to a large heat-transfer pad [9]
+ SOT-23: 2.9 mm × 1.3/1.75 mm × 1.3 mm body - three terminals for a transistor [10]
+ SOT-323 (SC-70): 2 mm × 1.25 mm × 0.95 mm body - three terminals [11]
+ SOT-416 (SC-75): 1.6 mm × 0.8 mm × 0.8 mm body - three terminals [12]
+ SOT-663: 1.6 mm × 1.6 mm × 0.55 mm body - three terminals [13]
+ SOT-723: 1.2 mm × 0.8 mm × 0.5 mm body - three terminals - flat lead [14]
+ SOT-883 (SC-101): 1 mm × 0.6 mm × 0.5 mm body - three terminals - leadless [15]
o DPAK (TO-252): discrete packaging. Developed by Motorola to house higher powered devices. Comes in three- or five-terminal versions [16]
o D2PAK (TO-263) - bigger than the DPAK; basically a surface mount equivalent of the TO220 through-hole package. Comes in 3, 5, 6, 7, 8 or 9-terminal versions [17]
o D3PAK (TO-268) - even larger than D2PAK [18]
* Five and six terminal packages
o SOT: small-outline transistor, with more than three terminals
+ SOT-23-5 (SOT-25): 2.9 mm × 1.3/1.75 mm × 1.3 mm body - five terminals [19]
+ SOT-23-6 (SOT-26): 2.9 mm × 1.3/1.75 mm × 1.3 mm body - six terminals [20]
+ SOT-23-8 (SOT-28): 2.9 mm × 1.3/1.75 mm × 1.3 mm body - eight terminals [21]
+ SOT-353 (SC-88A): 2.2 mm × 2.2 mm × 1.1 mm body - five terminals
+ SOT-363 (SC-88, SC-70-6): 2 mm × 1.25 mm × 0.95 mm body - six terminals [22]
+ SOT-563: 1.6 mm × 1.2 mm × 0.6 mm body - six terminals [23]
+ SOT-665: 1.6 mm × 1.6 mm × 0.55 mm body - six terminals [24]
+ SOT-666: 1.6 mm × 1.6 mm × 0.55 mm body - six terminals [25]
+ SOT-886: 1.5 mm × 1.05 mm × 0.5 mm body - six terminals - leadless
+ SOT-891: 1.05 mm × 1.05 mm × 0.5 mm body - five terminals - leadless
+ SOT-953: 1 mm × 1 mm × 0.5 mm body - five terminals
+ SOT-963: 1 mm × 1 mm × 0.5 mm body - six terminals
* Packages with higher terminal count (drawings of most of the following packages can be found on [26])
o Dual-in-line
+ Small-outline integrated circuit (SOIC) - small-outline integrated circuit, dual-in-line, 8 or more pins, gull-wing lead form, pin spacing 1.27 mm
+ J-Leaded Small Outline Package (SOJ) - the same as SOIC except J-leaded [27]
+ TSOP - thin small-outline package, thinner than SOIC with smaller pin spacing of 0.5 mm
+ SSOP - Shrink Small-Outline Package, pin spacing of 0.635 mm or in some cases 0.8 mm
+ TSSOP - Thin Shrink Small-Outline package.
+ QSOP - Quarter-Size Small-Outline package, with pin spacing of 0.635 mm
+ VSOP - Very Small Outline Package, even smaller than QSOP; 0.4, 0.5 mm or 0.65 mm pin spacing
+ DFN - Dual Flat No-lead, smaller footprint than leaded equivalent
o Quad-in-line
+ PLCC - plastic leaded chip carrier, square, J-lead, pin spacing 1.27 mm
+ QFP - Quad Flat Package, various sizes, with pins on all four sides
+ LQFP - Low-profile Quad Flat Package, 1.4 mm high, varying sized and pins on all four sides
+ PQFP - plastic quad flat-pack, a square with pins on all four sides, 44 or more pins
+ CQFP - ceramic quad flat-pack, similar to PQFP
+ MQFP - Metric Quad Flat Pack, a QFP package with metric pin distribution
+ TQFP - thin quad flat pack, a thinner version of PQFP
+ QFN - Quad Flat No-lead, smaller footprint than leaded equivalent
+ LCC - Leadless Chip Carrier, contacts are recessed vertically to "wick-in" solder. Common in aviation electronics because of robustness to mechanical vibration.
+ MLP (MLF) - Micro Leadframe Package (Micro Lead-Frame package) with a 0.5 mm contact pitch, no leads (same as QFN) [28]
+ PQFN - Power Quad Flat No-lead, with exposed die-pad[s] for heatsinking
o Grid arrays
+ PGA - Pin grid array.
+ BGA - ball grid array, with a square or rectangular array of solder balls on one surface, ball spacing typically 1.27 mm
+ LGA - An array of bare lands only. Similar to in appearance to QFN, but mating is by spring pins within a socket rather than solder.
+ FBGA - fine pitch ball grid array, with a square or rectangular array of solder balls on one surface
+ LFBGA - low profile fine pitch ball grid array, with a square or rectangular array of solder balls on one surface, ball spacing typically 0.8 mm
+ TFBGA - thin fine pitch ball grid array, with a square or rectangular array of solder balls on one surface, ball spacing typically 0.5 mm
+ CGA - column grid array, circuit package in which the input and output points are high temperature solder cylinders or columns arranged in a grid pattern.
+ CCGA - ceramic column grid array, circuit package in which the input and output points are high temperature solder cylinders or columns arranged in a grid pattern. The body of the component is ceramic.
+ μBGA - micro-BGA, with ball spacing less than 1 mm
+ LLP - Lead Less Package, a package with metric pin distribution (0.5 mm pitch).
o Non-packaged devices (although surface mount, these devices require specific process for assembly):
+ COB - chip-on-board; a bare silicon chip, that is usually an integrated circuit, is supplied without a package (usually a lead frame overmolded with epoxy) and is attached, often with epoxy, directly to a circuit board. The chip is then wire bonded and protected from mechanical damage and contamination by an epoxy "glob-top".
+ COF - chip-on-flex; a variation of COB, where a chip is mounted directly to a flex circuit.
+ COG - chip-on-glass; a variation of COB, where a chip is mounted directly to a piece of glass - typically an LCD.

There are often subtle variations in package details from manufacturer to manufacturer, and even though standard designations are used, designers need to confirm dimensions when laying out printed circuit boards.

tester


In-circuit test (ICT) is an example of white box testing where an electrical probe tests a populated printed circuit board (PCB), checking for shorts, opens, resistance, capacitance, and other basic quantities which will show whether the assembly was correctly fabricated. It may be performed with a bed of nails type test fixture and specialist test equipment, or with a fixtureless in-circuit test setup.

There are many different test platforms for performing in-circuit test; for instance, Agilent 3070, i5000, i3070 Series 5, and i1000, Genrad (now part of Teradyne) TestStation, TS8x, 228x, Stinger, Teradyne, Spectrum 88xx, Z18xx, SPEA, Qmax Systems like QT200, QT8200, V200, V250, V2200, Digitaltest, and SEICA.
Contents
[hide]

* 1 Bed of nails tester
* 2 Example test sequence
* 3 Limitations
* 4 Related technologies
* 5 References

[edit] Bed of nails tester

A bed of nails tester is a traditional electronic test fixture which has numerous pins inserted into holes in an Epoxy phenolic glass cloth laminated sheet (G-10) which are aligned using tooling pins to make contact with test points on a printed circuit board and are also connected to a measuring unit by wires. Named by analogy with a real-world bed of nails, these devices contain an array of small, spring-loaded pogo pins; each pogo pin makes contact with one node in the circuitry of the DUT (device under test). By pressing the DUT down against the bed of nails, reliable contact can be quickly and simultaneously made with hundreds or even thousands of individual test points within the circuitry of the DUT. The hold-down force may be provided manually or by means of a vacuum, thus pulling the DUT downwards onto the nails.

Devices that have been tested on a bed of nails tester may show evidence of this after the fact: small dimples (from the sharp tips of the Pogo pins) can often be seen on many of the soldered connections of the PCB.

Typically, four to six weeks are needed for the manufacture and programming of such a fixture. Fixtures can either be vacuum or press-down. Vacuum fixtures give better signal reading versus the press-down type. On the other hand, vacuum fixtures are expensive because of their high manufacturing complexity. The bed of nails or fixture as generally termed is used together with a in-circuit tester.

This technique of testing PCB's is being slowly superseded by boundary scan techniques (silicon test nails), automated optical inspection, and built-in self-test, due to shrinking product sizes and lack of space on PCB's for test pads.
[edit] Example test sequence

* Discharging capacitors and especially electrolytic capacitors (for safety and measurement stability, this test sequence must be done first before testing any other items)
* Contact Test (To verify the test system is connected to the Unit Under Test(UUT)
* Shorts testing (Test for solder shorts and opens)
* Analog tests (Test all analog components for placement and correct value)
* Testjet (Agilent), FrameScan (Genrad/Teradyne) or ElectroScan (SPEA) (Test for defective open pins on devices)
* Power up UUT
* Powered analog (Test for correct operation of analog components such as regulators and opamps)
* Powered digital (Test the operation of digital components and Boundary scan devices)
* JTAG Boundary scan tests [1]
* Flash,ISP and other device programming
* Agilent Medalist Beadprobe - Bead probe technology
* Agilent/Teradyne Powered Vectorless Test Solution – VTEP v2.0/Powered FrameScan [2]
* Discharging capacitors as UUT is powered down

While in-circuit testers are typically limited to testing the above devices, it is possible to add additional hardware to the test fixture to allow different solutions to be implemented. Such additional hardware includes:

* Cameras to test for presence and correct orientation of components
* Photodetectors to test for LED color and intensity
* External timer counter modules to test very high frequencies (over 50 MHz) crystals and oscillators
* External equipment can be used for hi-voltage measurement (more than 100Vdc due to limitation of voltage that is provided) or AC equipment Source those have interface to PC as the ICT Controller

[edit] Limitations

While in-circuit test is a very powerful tool for testing PCBs, it has these limitations:

* Parallel components can only be tested as one component if the component is same, but different component in parallel connection sometimes can be tested for each component in different testing method
* Electrolytic components can be tested for polarity only on specific configuration (e.g. if not parallel connected to power rails) or with specific sensor
* The quality of electrical contacts can not be tested
* It is only as good as the design of the PCB. If no test access has been provided by the PCB designer then some tests will not be possible. See Design For Test guidelines.

[edit] Related technologies

The following are related technologies and are also used in electronic production to test for the correct operation of Electronics Printed Circuit boards

* AXI Automated x-ray inspection
* JTAG Joint Test Action Group (Boundary Scan Technology)
* AOI automated optical inspection
* Functional testing (see Acceptance testing and FCT)

[edit] References

1. ^ Jun Balangue, “Successful ICT Boundary Scan Implementation,” CIRCUITS ASSEMBLY, September 2010. http://www.circuitsassembly.com/cms/magazine/208-2010-issues/10282-testinspection
2. ^ Jun Balangue, "Overcoming Limited Access at ICT," CIRCUITS ASSEMBLY, December 2008. http://www.circuitsassembly.com/cms/component/content/article/201/7655-overcoming-limited-access-at-ict

Panasonic smt


Home : Product Lines : Electronics Assembly
NPM
* NPM-D(Next Production Modular)
* NPM-W (Next Production Modular-Wide)

Inspection
* IP321
* IP121
* NPM (Next Production Modular)
* NPM-W (Next Production Modular-Wide)

Surface Mount Placement

* BM123/133
* BM221
* BM231
* CM101
* CM232
* CM602
* DT401
* HDF
* NPM (Next Production Modular)
* NPM-W (Next Production Modular-Wide)

Screen Printer

* SP18
* SP60
* SP80
* NPM (Next Production Modular)
* NPM-W (Next Production Modular-Wide)

Through-Hole

* AV131
* RL131
* RG131
* JV131

Pre-Owned Certified

* Certified CM402
* Certified MPAV2B
* Certified MSR
* Certified MSF

Panasonic Electronics Assembly


Panasonic's Electronics Assembly Group (EAG) offers highly reliable component placement equipment for any mix, any volume circuit manufacturing via world-class component placement, inspection and screen printing solutions. Panasonic's expertise as a manufacturer and provider of industry-leading SMT equipment, engineering and consultancy solutions drive your productivity without rival.

Our new lines of flexible, modular, small footprint placement machines - coupled with our superior software and attention to semiconductor industry standards, such as CamX & IPC9850, and energy-saving design - enable highly accurate, repeatable, optimized chip placement. All while reducing inventory, PCB rework, data preparation and model changeover time - and maintaining your profit.

Tap the power of a world-class manufacturing organization. Any time, any where. Any mix, any volume.

Followers

Top Stories